A windsturbine with their harvests the energy of winds rotor, converts it into electrical energy and feeds it into power grid. Also use the designations winds power plant, sometimes winds power converter (CHP), colloquially windsturbine or winds mill (wind turbine maintenance Idaho). Small plants that can be economically isolated operation are treated under winds generator; winds-driven pumps.
Like all machines can not reach windsturbines, the theoretical maximum. Aerodynamic losses resulting from air friction on the leaves, by vortices at the blade tips and swirl in wake of rotor. In modern systems, these losses reduce the power coefficient of cp, Betz 0.593 on cP equals 0.4 to 0.5. Of above 320 W / m ie up to 160 W / m expected. A rotor with 113 m diameter (10,000 m) is then 1.6 megawatts to shaft. To calculate the power at the mains addition, the efficiencies of all mechanical and electrical parts must still be considered.
The power coefficient of rotor is often overestimated when comparing different types. A ten percent lower power coefficient can be compensated by a five percent increase in rotor diameter. For the economic success it is of higher importance, covered with a given material use as large a rotor surface. Propeller-like rotors on a horizontal axis and a few leaves - - In this regard, the now common design is superior to other types.
The Dane Poul la Cour came in 1900 through systematic experiments - among others aerodynamic airfoil in winds tunnels - the concept of speed engine, in which only a few blades sufficient to exploit the energy of flow over the entire rotor surface. During the First World War, over 250 plants of this type in Denmark were in operation. In other countries winds engines were built for decentralized power generation in early 20th century. With the widespread electrification in interwar period, many ofse plants disappeared, equipped with DC generators and battery saving winds engines were not compatible with the AC power grid since.
After the Second World War, the winds energy research has been driven in different states. States such as France and Britain invested until c. 1965 heavily in winds power research. The promoted by the aviation improving the profile geometries in 1950s and 1960s to glide ratios well over 50 allowed extreme high speed with only a single rotor blade. Rotors with more than two leaves were regarded as backward. In view of low energy prices barely plants were built, with the exception of a few prototypes.
To a renaissance of winds energy came from the 1970s, among others as a result of environmental and energy debate and two oil crises. In some countries (such as Germany and the USA, among others) were reacted first to demanding industrial projects such as the two-leaf GROWIAN; but these had major technical problems and proved to be failures.
The exported also to thousands in 1980s in US plants had three rigid rotor blades (= no rigid blade angle adjustment) and a grid-connected inverter without phase machine with one or two fixed speeds. The capacity limitation was performed by flow separation. Archetype of this very successful concept was designed by Johannes Juul and in 1957 commissioned in Gedser windsturbine. It worked reliably up to its preliminary decommissioning in 1966 and was in late 1970s put back into service for a joint test program by scientists and NASA .
Their rated power, sometimes called the installed capacity reaches a windsturbine at the rated windsspeed. In capacity of plant is kept constant in order to avoid overloading. At very high windsspeeds (storm), the system is completely switched off. With a slight crescent shape in outer region of rotor blades soft gusts from the blade tips to leeward. The associated distortion of sheets reduces the angle of attack and therefore the winds load. Accordingly, material can be saved
Like all machines can not reach windsturbines, the theoretical maximum. Aerodynamic losses resulting from air friction on the leaves, by vortices at the blade tips and swirl in wake of rotor. In modern systems, these losses reduce the power coefficient of cp, Betz 0.593 on cP equals 0.4 to 0.5. Of above 320 W / m ie up to 160 W / m expected. A rotor with 113 m diameter (10,000 m) is then 1.6 megawatts to shaft. To calculate the power at the mains addition, the efficiencies of all mechanical and electrical parts must still be considered.
The power coefficient of rotor is often overestimated when comparing different types. A ten percent lower power coefficient can be compensated by a five percent increase in rotor diameter. For the economic success it is of higher importance, covered with a given material use as large a rotor surface. Propeller-like rotors on a horizontal axis and a few leaves - - In this regard, the now common design is superior to other types.
The Dane Poul la Cour came in 1900 through systematic experiments - among others aerodynamic airfoil in winds tunnels - the concept of speed engine, in which only a few blades sufficient to exploit the energy of flow over the entire rotor surface. During the First World War, over 250 plants of this type in Denmark were in operation. In other countries winds engines were built for decentralized power generation in early 20th century. With the widespread electrification in interwar period, many ofse plants disappeared, equipped with DC generators and battery saving winds engines were not compatible with the AC power grid since.
After the Second World War, the winds energy research has been driven in different states. States such as France and Britain invested until c. 1965 heavily in winds power research. The promoted by the aviation improving the profile geometries in 1950s and 1960s to glide ratios well over 50 allowed extreme high speed with only a single rotor blade. Rotors with more than two leaves were regarded as backward. In view of low energy prices barely plants were built, with the exception of a few prototypes.
To a renaissance of winds energy came from the 1970s, among others as a result of environmental and energy debate and two oil crises. In some countries (such as Germany and the USA, among others) were reacted first to demanding industrial projects such as the two-leaf GROWIAN; but these had major technical problems and proved to be failures.
The exported also to thousands in 1980s in US plants had three rigid rotor blades (= no rigid blade angle adjustment) and a grid-connected inverter without phase machine with one or two fixed speeds. The capacity limitation was performed by flow separation. Archetype of this very successful concept was designed by Johannes Juul and in 1957 commissioned in Gedser windsturbine. It worked reliably up to its preliminary decommissioning in 1966 and was in late 1970s put back into service for a joint test program by scientists and NASA .
Their rated power, sometimes called the installed capacity reaches a windsturbine at the rated windsspeed. In capacity of plant is kept constant in order to avoid overloading. At very high windsspeeds (storm), the system is completely switched off. With a slight crescent shape in outer region of rotor blades soft gusts from the blade tips to leeward. The associated distortion of sheets reduces the angle of attack and therefore the winds load. Accordingly, material can be saved
About the Author:
Get a summary of the things to consider before picking a wind turbine maintenance Idaho company and more information about a reputable company at http://300feetwind.com now.
No comments:
Post a Comment