Wednesday, December 2, 2015

Important Information About Diffusion Coatings

By Marci Nielsen


Metal components are meant to be used or operated in different environments. Some of those environments are very harsh in that they have very high temperatures, are very corrosive, or are very reactive among other conditions. Such environments are able to cause very severe effects when they come in contact with metal components, which may lead to a significant reduction in durability, aesthetic value, and functionality among others. To curb the effects of such environments, diffusion coatings were invented.

Diffusion coating is the process through which metal substrates are coated with diffusion coating. The process requires a special piece of equipment called a chamber and optimal temperatures are usually very high. Thorough cleaning of substrate must be done first before the process is started. Abrasive blasting is the most commonly used method although other methods can be used. Unwanted materials must be removed because they prevent complete bonding between the metal and substrate.

After being properly cleaned, the substrate is placed in a special container, which is placed inside a furnace in turn. The furnace is sometimes called a chamber. The furnace operates at very high temperatures, which range between 380-425 degrees.

Diffusion of the metal occurs when temperatures rise high enough within the range specified. An alloy between the substrate and metal is formed in turn. The duration of the whole processes varies relying on the kind of metal and substrate used. However, 2-4 hours is the normal range. Continuous turning of substrates must be done for uniformed thickness to be attained.

The smoothness of the resultant coating is high while the thickness if uniform. Thicknesses can be varied to suit different functions. However, 15-80 micrometers is the normal range of thickness. The coating resembles the metal used in color. Iron, cobalt, chromium, aluminum, and silicon are some among the commonest metals in use. Various metals such as iron, steels, cobalt, and nickel can be coated.

The coating is resistant to erosion, oxidation, and reaction with air, water, and other substances. A lot of reliability, durability, and strength is achieved in components that are needed in critical functions. Pump impellers, power generation constituents, gave valves, and components or gas turbines engine like vanes, blades, and cases are examples of parts that usually get coated through this method.

The process is used mostly in industrial settings and few household equipment have components that are coated this way. The technology was invented several years ago and has been undergoing a lot of modifications aimed at perfecting it. Currently, there are better methods and technology for doing it.

Modern furnaces incorporate several important features that make them more effective and functional. The improved functionality and efficiency allows for the attainment of thin coats that last longer and are stronger, while offering good protection at the same time. The employment of this technology seems to be higher in automobile industry.




About the Author:



No comments: